

Geodesy 1B Lecture 2 Precise Leveling

Dr. Mohamed FREESHAH

Geomatics Engineering Department, Faculty of Engineering at Shoubra, Benha University

> Email: mohamedfreeshah@whu.edu.cn Mohamed.freeshah@feng.bu.edu.eg

> > Lecture 2 Precise Leveling – Dr Mohamed Freeshah

Contents

- Review and ideas of trigonometric leveling
- Important definitions
- Precise leveling
- Correction of P.L
- Applications of P.L
- P.L vs ordinary leveling

Trigonometric Levelling in small areas, Total Station mechanism

Trigonometric Levelling in small areas, Total Station mechanism

Important Definitions 1- LEVELLING

• *Levelling* is an operation in surveying performed to determine the difference in levels of two points. By this operation the height of a point from a *datum*, known as *elevation*.

2- LEVEL SURFACE

• A *level surface* is the **equipotential** surface of the earth's gravity field. It is a curved surface and every element of which is normal to the plumb line.

Important Definitions 3- DATUM

• A *datum* is a reference surface of constant potential, called as a level surface of the earth's gravity field, for measuring the elevations of the points. One of such surfaces is the **MSL** surface and is considered as a standard datum. Also **arbitrary** surface adopted as a datum.

4- LEVEL LINE

• A line lying in a level surface is a *level line*. It is thus a curved line.

Precise Leveling

- This is the operation of levelling in which precise instruments are used. It is used for establishing bench marks for future public work.
- In principle, no difference between ordinary and precise leveling.
- In the former, distances between check points are short, elevations are satisfactory for routine purposes.
- Efforts to control all the sources of errors (balancing of B.S and F.S, equal length of sights...etc.)
- Read temperatures to correct graduations along the length of staff, also, coefficient of refraction. Shimmering (near foot of staff)
- Unequal expansion of instrument parts (keep it in shade)

Precise Leveling Corrections

Precise Leveling Corrections

- The corrections for the curvature of the level line Cc and refraction Cr are shown in
- The combined correction is given by

$$C_{cr} = -\frac{3}{7} \frac{d^2}{R} \qquad ...(3.1)$$

where

 C_{cr} = the correction for the curvature and refraction, d = the distance of the staff from the point of tangency, and R = the mean earth's radius.

For the value of R = 6370 km and d in kilometre, the value of C_{cr} in metre is given as

$$C_{cr} = -0.067d^{2} \qquad \dots (3.2)$$
Lecture 2 Precise Leveling – Dr Mohamed Freeshah

Loop Closure

- A *loop closure* or *misclosure* is the amount by which a level circuit fails to close. It is the difference
- of elevation of the measured or computed elevation and known or established elevation of the same
- point. Thus loop closure is given by

e = computed value of R.L. – known value of R.L.

- If the length of the loop or circuit is *L* and the distance of a station to which the correction
- *c* is computed, is *l*, then

$$c = -e \frac{l}{L}$$

Lecture 2 Precise Lecture – Dr Mohamed Freeshah

Precise level differ from ordinary level

- The leveling base is made broad and part of instrument is reduced in height. (stability)
- The bubble tube curvature is made large to increase sensitivity
- Magnification of telescope (aperture of telescope at least 4 cm)
- A parallel plate micrometer to read staff directly 0.001 m

Invar precision leveling staff

- Invar (an alloy of iron and nickel with a <u>negligible</u> coefficient of expansion, used in the making of clocks and scientific instruments.)
- It is used for precise leveling work. Generally, 3 m long. To mount staff accurately, detachable stays are provided.
- An invar band (5-10 mm thickness) is fitted to the wooden staff.

Has a circular bubble, Metal base Prevent corrosion of staff base

More accurate

Sometimes min. division 0.5cm (double that of ordinary staff)

Lecture 2 Precise Leveling – Dr Mohamed Freeshah

Micrometer with certain divisions (50 or usually 100) dividing the min. division of the staff and increasing the final accuracy¹³

Cross-hair in Precise Levelling

Wedge cross hair

- Focusing the division on the horizontal cross hair is replaced by focusing on the tangency of the wedge cross hair with the staff division
- Micrometer readings are always added whatever
- focusing on upper or lower division

1- Benchmark Transfer

2- Concrete Bridge's Loading Test

Fig 1: - Bridge Load Testing

- Determine the **deformation** of bridges due to ultimate cases of loading
- Check elasticity (returning to its original state) or plasticity (permanent deformation due to loading) of any bridge after removal of loading.

- 2- Concrete Bridge's Loading Test
- How to get Readings?
- a) Before loading.
- b) Just after loading.
- c) 1 hour after loading.
- d) 2 hours after loading.
- e) Just after loading removal...and so on.

3- Crust Deformation

Check the movement of Earth's surface due to strong force such as Earthquakes

The level page for Precise leveling

Table 6.4 Level book page 3

Station	B.S .	H.I.	F.S.	<i>R.L.</i>	Temperature (°C)	Remarks
	1.530	(al) 25 3	the stand	s in pash s	minument and au	
1	2.100	Contractor and	a marte and	to want of	Contraction of the second	B.M.
	2.670	anna la	1 adams			
Mean	2.100	128.425	icitol si	126.325	naniby strend	
da mon	1.260		1.200	and - barn		TP
2	1.900	ul d'als e s	1.831	I idered	n herseben er stor	1.1.
Contract and	2.541	oban it	2.463	adu) slite		
Mean	1.900	T ZIEBAT	1.831	126.594		
	SHO 1998	(H) 4 12001	1.382	ana ada sa		
3	ALL	128.494	1.964	destaular.		
		then role of	2.645	a transfer by		
		Mean	1.964	126.530		
1 1 101	Σ B.S Σ F.S. = 4.000 - 3.795 = 0.205			Last R.L. – First R.L. = $126.530 - 126.325 = 0.205$		

Standards of permissible errors in P.L

- 1st order ±4 (k)^{1/2} mm
- 2nd order ±8 (k)^{1/2} mm
- 3rd order ±12 (k)^{1/2} mm
- K is distance in km

Calculations of Curvature and Refraction corrections

• Look at white board